
International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015                                                                                                   1467 
ISSN 2229-5518 

IJSER © 2015 
http://www.ijser.org  

Controlled formalized operators 
Nikolay Raychev 

 

Abstract - In this report is considered the generalization of the principles, which manage the formalization of controlled qubit operators. The 
research builds on the standard external data sources, for development of a generalized system for conditional operators. Certain controlled 
operators are viewed as linear combinations of universal operators. This system provides a generalized scheme for the type of the controlled 
operators, which could be encountered in a circuit, composed entirely of elementary operators.  

Index Terms— boolen function, circuit, composition, encoding, gate, phase, quantum.   

——————————      —————————— 

1 INTRODUCTION                                                                     
In this report is presented a formalized generalization of 

single qubit and controlled operators, based on formalized 
single qubit operator. This work is part of the developed by 
the author formalized system for designing of algorithmic 
models for quantum circuits, based on phase encoding, decod-
ing and parameterization of primitive quantum operators. In 
previous publications of the author [6, 7, 8] were defined sev-
eral sets of operators on the n qubit, which generalize certain 
classical characteristics: identity and logical negation. Moreo-
ver, some ways were explored in which can be constructed 
operators as linear combinations of elements from those sets. 
Such combinations capture the partial application of an opera-
tor together with another operator, which in a broader sense is 
its logical negation.  

2 CONTROLLED OPERATORS   
The controlled operators conditionally use one of two single 
qubit operators. At the quantum computations is more appro-
priate to think that the condition for application is a condition 
on basis states, and not on the overall state. One approach for 
operation with controlled operators is to seek their basic defi-
nition and express their effect on basis states in terms of in-
dexed formalized gates. 

�𝑦�𝐶𝐶[𝑐][𝑡](𝐴,𝐵)�𝑥� = �
�𝑦�𝐴[𝑡]�𝑥�       𝑥𝑐 = 0
�𝑦�𝐵[𝑡]�𝑥�       𝑥𝑐 = 1

          (1) 

 
The index c determines the control bit, while t specifies the 
target. Thus, the operator 𝐴[𝑡] is applied when the c-th bit of x 
is 0, and 𝐵[𝑡] – when it's 1. Viewed from the phase encod-
ing/decoding perspective, the action of a controlled operator 
is to encode/decode with 𝐴 to the subset of basis states x, 
where 𝑥𝑐 = 0, and with В, where 𝑥𝑐 = 1. While this approach to 
elementary controlled operators is elementary, the formalized 
system for designing of algorithmic models for quantum cir-
cuits offers a second approach, which unifies the elementary 
controlled operations with another important aspect of many 
quantum algorithms, the Oracle operators. 
 
A standard technique in the design of quantum algorithms is 
the use of an Oracle operator to enact a phase-kickback opera-
tion [34].   Here an arbitrary, possibly irreversible function 
𝑓:𝔹𝑚 → 𝔹𝑙 is encoded into an n = m + l qubit operator 𝐶𝑓, such 
that 𝐶𝑓|𝑥𝑦⟩ =|𝑥(𝑦⨁𝑓(𝑥))⟩, where x ∈ 𝔹𝑚, and y ∈ 𝔹𝑙. Normally 

are used higher degree bits for x and with a lower degree for y.  
The same could be carried out in reverse where 
𝐶𝑓|𝑦𝑥⟩ =|(𝑦⨁𝑓(𝑥)𝑥)⟩. In both cases 𝐶𝑓 acts as Oracle for 𝑓. 
Such operations are accepted as the controlled application of l 
qubit operator 𝐶𝑓�, where x acts as control bit, and y as target. 
The phase kick-back occurs when the target qubits are set to  
an own state 𝐶𝑓�, and the value of f(x) is encoded into the phase 
of the resultant state. It is possible to apply this conception for 
the controlled operations to an elementary, two qubit con-
trolled operators, which will provide a new means for viewing 
the behavior of the elementary controlled operations and the 
interference patterns that they generate. 
 
Classification of the controlled operators  
To generalize the behavior of a 𝐶𝑓-type operator must be ena-
bled to occur phase shifts in addition to the basis changes. 
Definition 1 defines the behavior of such a generalization for 
𝑓 ∈ ℬ1. 
 
Definition 1. 𝐶ℬ1|𝑛 is the set of n qubit operators such that for each 
V ∈ 𝐶ℬ1|𝑛 there exist some f, g ∈ ℬ1 and c, t ∈ {0, 1, … ,𝑛 − 1} with 
𝑐 ≠ 𝑡 where, 
𝑉�𝑥〉 = (−1)𝑔(𝑥𝑡)�𝑦〉  

𝑦𝑖 = �
𝑥𝑖                    𝑖 ≠ 𝑡
𝑥𝑖⨁𝑓(𝑥𝑐)      𝑖 = 𝑡                (2) 

for 𝑥, 𝑦 ∈ 𝔹𝑛 and for each i ∈ {0, 1, … ,𝑛 − 1}. 
 
More concretely, for 𝐶ℬ1|𝑛 is thought in terms of the four sets 
of operators, defined relative to the functions in ℬ1. 𝐶Β1|𝑛 =
𝐶𝑍𝐸𝑅𝑂|𝑛 ∪ 𝐶𝑂𝑁𝐸|𝑛 ∪  𝐶𝐼𝐷|𝑛 ∪ 𝐶𝑁𝑂𝑇|𝑛 
 
Each subset of 𝐶ℬ1|𝑛 contains the operators which correspond 
to equation 2 relative to the function 𝑓 ∈ ℬ1. This leads to a 
characterization of 𝐶ℬ1|𝑛 in terms of the two qubit  
controlled operators. 
 
Theorem 1 For n > 1, 
𝐶Β1|𝑛 =   �𝐶𝐶[𝑐][𝑡](𝐴,𝐵)|𝐴,𝐵 ∈ 𝐸𝑥𝑡1 ∪  𝑁𝑁𝑥𝑡1 𝑎𝑛𝑎 c, t

∈ {0,1 … , n− 1} с c ≠ t� 
 
Proof. Each of the following theorems can be easily verified 
using equation1.  

1. If A, B ∈ Ех𝑡1, then 𝐶𝐶[𝑐][𝑡](𝐴,𝐵) ∈ 𝐶𝑍𝐸𝑅𝑂|𝑛 
2. If A, B ∈ 𝑁ех𝑡1, then 𝐶𝐶[𝑐][𝑡](𝐴,𝐵) ∈ 𝐶𝑂𝑁𝐸|𝑛 
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3. If A ∈ Ех𝑡1 and B ∈ 𝑁ех𝑡1, then 𝐶𝐶[𝑐][𝑡](𝐴,𝐵) ∈
𝐶𝐼𝐷|𝑛 

4. If A ∈ 𝑁ех𝑡1 and B ∈ Ех𝑡1, then 𝐶𝐶[𝑐][𝑡](𝐴,𝐵) ∈
𝐶𝑁𝑂𝑇|𝑛 

Having checked all possible phases of A and В, can be 
achieved all possible functions for phase encoding in ℬ1 to 
satisfy equation 2. If this is done for all pairs of  c, t ∈
{0, 1, … ,𝑛 − 1} and 𝑐 ≠ 𝑡, it is shown that 
�𝐶𝐶[𝑐][𝑡](𝐴,𝐵)|𝐴,𝐵 ∈ Ех𝑡1 ∪ 𝑁ех𝑡1, 𝑐, 𝑡 ∈ {0, 1, … ,𝑛 − 1}, 𝑐 ≠ 𝑡�

⊆ 𝐶ℬ1|𝑛 
 
Furthermore, by covering all possible phases and con-
trol/target combinations for each of the four subsets of 𝐶ℬ1|𝑛, 
it is found that 
𝐶ℬ1|𝑛 ⊆ �𝐶𝐶[𝑐][𝑡](𝐴,𝐵)|𝐴,𝐵 ∈ Ех𝑡1 ∪ 𝑁ех𝑡1, 𝑐, 𝑡

∈ {0, 1, … ,𝑛 − 1}, 𝑐 ≠ 𝑡� 
 
It is easily verified that when V = 𝐶𝐶[𝑐][𝑡](𝐴,𝐵) ∈ 𝐶ℬ1|𝑛, the 
effect of V is fully  
characterized by the parameters c and t, the parameters of A 
and В, as well as 𝑓 ∈ ℬ1, that corresponds to the subset of 
𝐶ℬ1|𝑛, to which V belongs. 

⟨𝑦|𝑉|𝑥⟩ = �
0      𝑥⨁𝑦 ∉ {0, 2𝑡}

(−1)ℰ(𝐴)𝑓(𝑥𝑐)(𝑥𝑡) 𝑥𝑐 = 0  𝑥⨁𝑦 = 𝑓(𝑥𝑐) ∗  2𝑡

(−1)ℰ(𝐵)𝑓(𝑥𝑐)(𝑥𝑡) 𝑥𝑐 = 1  𝑥⨁𝑦 = 𝑓(𝑥𝑐) ∗  2𝑡
      (3) 

 
The characterization of 𝐶ℬ1|𝑛 leads to a general specification of 
the form of their matrix representations. 
 
Theorem 2 If V = 𝐶𝐶[𝑐][𝑡](𝐶(𝛼𝐴,𝑝𝐴),𝐶(𝛼𝐵 ,𝑝𝐵)). Then: 
 
For V ∈ 𝐶𝑍𝐸𝑅𝑂|𝑛 

𝑉𝑖,𝑗 = �
(−1)ℰ(𝑝𝐴)0 𝑖 = 𝑗  𝑎𝑛𝑎  𝑖𝑐 = 0 
(−1)ℰ(𝑝𝐵)0 𝑖 = 𝑗  𝑎𝑛𝑎  𝑖𝑐 = 1

0       𝑜𝑡ℎ𝑁𝑒𝑒𝑖𝑒𝑁
 

 
For V ∈ 𝐶𝑂𝑁𝐸|𝑛 with target qubit t 

𝑉𝑖,𝑗 = �
(−1)ℰ(𝑝𝐴)1 𝑖⨁𝑗 = 2𝑡   𝑎𝑛𝑎  𝑖𝑐 = 0 
(−1)ℰ(𝑝𝐵)1 𝑖⨁𝑗 = 2𝑡   𝑎𝑛𝑎  𝑖𝑐 = 1

0                𝑜𝑡ℎ𝑁𝑒𝑒𝑖𝑒𝑁
 

 
For V ∈ 𝐶𝐼𝐷|𝑛 with target qubit t 

𝑉𝑖,𝑗 = �
(−1)ℰ(𝑝𝐴)0        𝑖 = 𝑗  𝑎𝑛𝑎  𝑖𝑐 = 0 
(−1)ℰ(𝑝𝐵)1 𝑖⨁𝑗 = 2𝑡   𝑎𝑛𝑎  𝑖𝑐 = 1

0               𝑜𝑡ℎ𝑁𝑒𝑒𝑖𝑒𝑁
 

 
For V ∈ 𝐶𝑁𝑂𝑇|𝑛 with target qubit t 

𝑉𝑖,𝑗 = �
(−1)ℰ(𝑝𝐴)1        𝑖⨁𝑗 = 2𝑡   𝑎𝑛𝑎  𝑖𝑐 = 0 
(−1)ℰ(𝑝𝐵)0                 𝑖 = 𝑗  𝑎𝑛𝑎  𝑖𝑐 = 1

0                       𝑜𝑡ℎ𝑁𝑒𝑒𝑖𝑒𝑁
 

 
Proof. The proof follows from Theorem 1 and equation 3. 
When developing the system for single qubit operators, it was 
helpful to view them as combinations of their Ех𝑡1 and 𝑁ех𝑡1 
basis operators such that the entire action can be accepted as 
an 𝛼 degree 𝑁ех𝑡1 and 1 – 𝛼 degree 𝐸𝑡1operator. In the case of 
the 𝐶ℬ1|𝑛 operators, a similar thing can be done in terms of the 
functions of ℬ1. 

 
For 𝑓 ∈ ℬ1, operator V, which carries out 𝛼 degree 𝐶𝑓|𝑛, has the 
effect described in equation 4. The effect of the operator is 
partly conditional on  𝑓 and partly conditional on 𝑓̅. If 𝑁0,𝑁1 
are functions in ℬ1, then 

⟨𝑦|𝑉|𝑥⟩ = �
(−1)𝑒0(𝑥𝑡)√𝑎      𝑥⨁𝑦 = 𝑓(𝑥𝑐) ∗  2𝑡

(−1)𝑒1(𝑥𝑡)√1− 𝑎 𝑥⨁𝑦 = 𝑓̅(𝑥𝑐) ∗  2𝑡   
0                                  𝑜𝑡ℎ𝑁𝑒𝑒𝑖𝑒𝑁  

        (4) 

 
𝐶𝑓|𝑛 An 𝛼 degree effectively acts as a linear combination of 
two of the elements of 𝐶ℬ1|𝑛:𝐶𝑓|𝑛 and 𝐶�̅�|𝑛. There are exactly 
two forms of the two qubit controlled operators  
that show this very well defined structure. An 𝛼 degree 
𝐶𝑍𝐸𝑅𝑂|𝑛 operator is the combination of a 𝐶𝑍𝐸𝑅𝑂|𝑛 operator with 
𝐶𝑂𝑁𝐸|𝑛, while an 𝛼𝐶𝐼𝐷|𝑛 operator combines 𝐶𝐼𝐷|𝑛 with 𝐶𝑁𝑂𝑇|𝑛. 
 
Degree 𝜶 operators 𝑼𝒁𝑬𝑹𝑶|𝒏 
A degree 𝛼 operator 𝐶𝑍𝐸𝑅𝑂|𝑛 can also be called 𝛼 a degree (1 - 
𝐶𝑂𝑁𝐸|𝑛) operator.  Each operator V of this form has the follow-
ing effect, when applied to basis states. 

⟨𝑦|𝑉|𝑥⟩ = �
(−1)𝑒0(𝑥𝑡)√𝑎      𝑥 = 𝑦

(−1)𝑒1(𝑥𝑡)√1− 𝑎 𝑥⨁𝑦 =  2𝑡   
0             𝑜𝑡ℎ𝑁𝑒𝑒𝑖𝑒𝑁  

         (5) 

 
First it should be noted that these operators generalize the set 
of the indexed, formalized operators. 
 
Theorem 3 If 𝛼 ∈ [0, 1] such that the indexed, formalized oper-
ator 𝐴 = 𝐶[𝑡](𝛼, 𝛾𝛾𝛾). Then А is an 𝛼 degree 𝐶𝑍𝐸𝑅𝑂|𝑛 operator. 
Proof. The proof follows from equation 5 and 3.3.3.1 
 
An indexed operator is a special form of these operators with 
unconditionally applied phase functions. The condition for 
carrying out an 𝛼𝐶𝑍𝐸𝑅𝑂|𝑛, which conditionally  
applies phase functions is given in theorem 4. 
 
Theorem 4 For 𝛼 ∈ [0, 1], let А = 𝐶(𝛼, (𝛾𝛾𝛾)𝐴) and B =
𝐶(𝛼, (𝛾𝛾𝛾)𝐵) be single  
qubit operators. Then 𝐶 = 𝐶𝐶[𝑐][𝑡](𝐴,𝐵) is an 𝛼 degree 𝐶𝑍𝐸𝑅𝑂|𝑛. 
When the phase parameters of both operators are the same 
then А = В and the two qubit operator С is equivalent to a sin-
gle qubit, indexed operator. When the phase parameters of А 
and В differ, then the resultant operation is characterized by 
conditional encoding and decoding. The perspective for the 
coding is simple. The sub-operators А and В will encode the 
information about the target qubit to their respective subspac-
es, where 𝑥𝑐 = 0 and 𝑥𝑐 = 1. 
What is perhaps more impressing for the characterization of 
these operators is their behavior at decoding. If 𝐶 =
𝐶𝐶[𝑐][𝑡](𝐴,𝐵) is a two qubit operator with operators А and В of 
the subspace such, that С is an 𝛼 degree 𝐶𝑍𝐸𝑅𝑂|𝑛 operator. In 
such a case the exact action of C is  

⟨𝑦|𝑉|𝑥⟩ =  

⎩
⎪
⎨

⎪
⎧ (−1)ℰ(𝐴)0(𝑥𝑡)√𝑎 𝑥𝑐 = 0  𝑎𝑛𝑎  𝑥 = 𝑦

(−1)ℰ(𝐴)1(𝑥𝑡)√1− 𝑎         𝑥𝑐 = 0  𝑎𝑛𝑎  𝑥⨁𝑦 = 2𝑡

(−1)ℰ(𝐵)0(𝑥𝑡)√𝑎 𝑥𝑐 = 1  𝑎𝑛𝑎  𝑥 = 𝑦
(−1)ℰ(𝐵)1(𝑥𝑡)√1− 𝑎         𝑥𝑐 = 1  𝑎𝑛𝑎  𝑥⨁𝑦 = 2𝑡

(6) 

It should be recalled that the requirement for the amplitude at 
identity decoding is that the amplitude of the decoder to be 
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equivalent to that of the encoder.  At the negation decoding 
the amplitude 𝛼𝑑 of the decoder is (1 - 𝛼𝑒), where 𝛼𝑒 is the 
encoding amplitude. Thus for properly chosen 𝛼, these opera-
tors can carry out conditional identity or negation decoding. 
The limiting factor here is that the same type of decoding occurs in 
both subspaces. In other words, if an operator carries out an 
identity decoding in the subspace where the control bit is 0, 
then it either carries out an identity decoding in the subspace 
where the control bit is 1 or it does not decode in that sub-
space. 
 
Degree 𝜶 operators 𝑼𝑰𝑫|𝒏 
A degree 𝛼 operator 𝐶𝐼𝐷|𝑛, similarly to a degree (1 - 𝛼) 𝐶𝑁𝑇|𝑛operator, is 
characterized by the following formula. If V is a degree 𝛼 operator 𝐶𝐼𝐷|𝑛 , 
 

⟨𝑦|𝑉|𝑥⟩ = �
(−1)𝑒0(𝑥𝑡)√𝑎      𝑥⨁𝑦 = 𝐼𝐼(𝑥𝑐) ∗  2𝑡

(−1)𝑒1(𝑥𝑡)√1− 𝑎    𝑥⨁𝑦 = 𝑁𝑁𝑁(𝑥𝑐) ∗  2𝑡   
0                               𝑜𝑡ℎ𝑁𝑒𝑒𝑖𝑒𝑁  

       (7) 

The thing that immediately makes an impression is that no subset of these 
operators can be captured by an unconditional, indexed operator. The 
indexed operators unconditionally create superpositions  
where the identity of the input basis has a probability amplitude ±√𝛼. 
These operators will conditionally set the probability amplitude of basis 
|𝑥⟩ to be √𝛼 or √1− 𝛼, based on the value of the control bit 𝑥𝑐. 
 
While an 𝛼 degree 𝐶𝑍𝐸𝑅𝑂|𝑛 operator requires equivalent amplitude param-
eters for both subspace operators, an 𝛼 degree 𝐶𝐼𝐷|𝑛 operator requires the 
amplitude to be complementary. 
 
Theorem 5 For 𝛼 ∈ [0, 1], let А = 𝐶(𝛼, (𝛾𝛾𝛾)𝐴) and B = 𝐶(1 − 𝛼, (𝛾𝛾𝛾)𝐵) be 
single  
qubit operators. Then 𝐶 = 𝐶𝐶[𝑐][𝑡](𝐴,𝐵) is an 𝛼 degree 𝐶𝐼𝐷|𝑛. 
Proof. First, let's examine the effect of the subspace operators А and B.  
𝐴[𝑡]|𝑥〉 =  (−1)𝜀((𝛾𝜄𝜂)𝐴)0√𝑎|𝑥〉 +  (−1)𝜀((𝛾𝜄𝜂)𝐴)1√1− 𝑎|𝑥⨁2𝑡〉 
𝐵[𝑡]|𝑥〉 =  (−1)𝜀((𝛾𝜄𝜂)𝐴)0√1− 𝑎|𝑥〉 +  (−1)𝜀((𝛾𝜄𝜂)𝐴)1√𝑎|𝑥⨁2𝑡〉 
        
When 𝑥𝑐 = 0 (respectively 𝑥𝑐 = 1), then А|𝑥⟩ (respectively В|𝑥⟩) carries out 
the desired action for an 𝛼 degree 𝐶𝐼𝐷|𝑛 operator. If 𝐶 = 𝐶𝐶[𝑐][𝑡](𝐴,𝐵) is a 
two qubit operator with subspace operators А = 𝐶(𝛼𝐴, 𝑝𝐴) and B = 𝐶(1−
𝛼𝐵 ,𝑝𝐵), such that С is an 𝛼𝐴 degree 𝐶𝐼𝐷|𝑛 operator. From there the exact 
action of C is 
    

⟨𝑦|𝑉|𝑥⟩ =  

⎩
⎪
⎨

⎪
⎧ (−1)ℰ(𝑝𝐴)0(𝑥𝑡)√𝑎 𝑥𝑐 = 0  𝑎𝑛𝑎  𝑥 = 𝑦

(−1)ℰ(𝑝𝐴)1(𝑥𝑡)√1− 𝑎         𝑥𝑐 = 0  𝑎𝑛𝑎  𝑥⨁𝑦 = 2𝑡

(−1)ℰ(𝑝𝐵)0(𝑥𝑡)√𝑎 𝑥𝑐 = 1  𝑎𝑛𝑎  𝑥 = 𝑦
(−1)ℰ(𝑝𝐵)1(𝑥𝑡)√1 − 𝑎         𝑥𝑐 = 1  𝑎𝑛𝑎  𝑥⨁𝑦 = 2𝑡

0                                            𝑜𝑡ℎ𝑁𝑒𝑒𝑖𝑒𝑁

 (8) 

 
The encoding/decoding action of С is in opposition to that of 𝐶𝑍𝐸𝑅𝑂|𝑛 
degree 𝛼operators. When a 𝐶𝐼𝐷|𝑛 degree 𝛼 operator carries out an identity 
decoding in one subspace, the other subspace is either subject to a nega-
tion decoding or is not decoded depending on the seleciton of phase 
parameters. If operator А is a decoder, then the required amplitude for 
operator В puts В as an additional decoder with the right choice of phase 
parameters. 
 
Partially controlled operators  
The  𝐶ℬ1|𝑛 degree 𝛼 operators capture an ordered subset of the controlled 
operators that can be expressed with equation 1. This well structured 

subset is computed on very specific relationships between the amplitude 
parameters for the subspace operators. Thus, the characterization of non-
basis controlled operators as the degree 𝛼 operators does not serve to 
classify all the possible controlled operators, which might be specified 
within the formalized system for designing of algorithmic models for 
quantum circuits. However, it does capture the form of controlled opera-
tors encountered in circuits, which are constructed of elementary opera-
tors. 
 
If 𝐶 = 𝐶𝐶[𝑐][𝑡](𝐴,𝐵) for 𝐴,𝐵 ∈ Ех𝑡1 ∪ 𝑁ех𝑡1. Then, for an indexed operator 
D, targeting qubit t,   
𝐼𝐶 = 𝐶𝐶[𝑐][𝑡](𝐴𝐼,𝐵𝐼)       (9) 
 
From Theorem 5 it clearly follows that DC must be some form of degree 
𝐶ℬ1|𝑛 𝛼 operator. Given that the CNOT operator, 𝐶𝐶[𝑐][𝑡](𝐼,𝑋) is the only 
controlled operator  
needed for the construction of n qubit circuits, it follows that equation 9, 
and therefore the degree 𝐶ℬ1|𝑛 𝛼 construction, captures the subset of con-
trolled operators, which might be encountered in the current practice  

3 CONCLUSION 

This report examines controlled formalized operators. The two qubit 
controlled operator defined in equation 1, is more or less the same gener-
alization, which is presented in the previous reports of the author [7, 8, 9].   
The research builds on the standard 𝐶𝑓 external data sources, for devel-
opment of a generalized system for conditional operators. This is complet-
ed in Theorem 1.  Then it was shown in equation 4, how certain controlled 
operators may be considered as linear combinations of 𝐶ℬ1|𝑛 operators.  
This system allows for operation with controlled operators and Oracle 
operators in the same unified system, and in a way, similar to the one, 
which was used for the single qubit operators. It provides a generalized 
scheme for the type of the controlled operators, which could be encoun-
tered in a circuit, composed entirely of elementary operators.  
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